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The pillar concept of Foulis and Randall's school is surely that of a manual of 
operations. They chose to regard an operation as the set of possible outcomes, 
thereby taking a manual of operations to be a family of partially overlapping 
operations. Our previous work is a development of their ideas in two points. 
First, each operation is represented not by the set of possible outcomes, but by 
the complete Boolean algebra of observable events. Second, since each complete 
Boolean algebra B possesses the Scott-Solovay model V CB~ of classical set theory 
as its higher-order companion, the Scott-Solovay universes of all the operations 
in the manual lump together into a family of Boolean set theories interconnected 
by geometric morphisms, which we suggestively designated an empirical set 
theory. The principal concern of this paper is to show how to get a cross- 
operational set concept by choosing an internal set within V ~B~ for each operation 
B in the manual and bundling them up. The resulting structure is denominated 
an empirical set. We show that the category of empirical sets is complete, is 
cocomplete, has a subobject classifier for well-rounded subobjects, and has 
exponentials only for degraded objects. 

I N T R O D U C T I O N  

Foulis and Randall (1972; Randall and Foulis, 1973) discussed manuals 
of operations so as to formalize the operational and epistemological aspects 
of empirical sciences ranging from physics and biology to sociology and 
artificial intelligence. In their literature an operation is identified with a set 
of possible outcomes and a manual of operations is thought to be a family 
of partially overlapping operations. Although each operation enjoys classical 
logic and classical statistics, the logic and the statistics of a manual of 
operations as a whole are not classical in general, since the existence of a 
grand operation refining all the operations in the manual is rather an exception 
than a rule. 
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230 N i s h i m u r a  

In a previous paper (Nishimura, 1993b), as a maverick of Foulis and 
Randall's school, we modernized their ideas by using category theory and 
outlined a higher-order generalization. There each operation is represented 
by a complete Boolean algebra B, and our empirical set theory is a family 
of Scott-Solovay universes V ~B) interconnected by geometric morphisms. 
Our ambition is modest enough. We aim ultimately to do the same thing to 
so-called quantum logic as Grothendieck did to algebraic geometry some 
decades ago. 

There we showed that so long as the manual of operations is well 
behaved, the real numbers of our empirical set theory can be identified 
externally with the observables on its logic. Now a question naturally occurs 
to us. What conceptual status does the family of the internal sets of real 
numbers within V ~B) for all the operations B in the manual occupy internally? 
A similar question occurs for truth-value objects. What role does the internal 
truth-value objects within V CB~ for all the operations B in the manual play? 

The principal objective of this study is to introduce a cross-operational 
notion of an empirical set, which is hopefully an answer to the above questions, 
and then to discuss the fundamental properties of the category of empirical 
sets. It is shown that the category is complete, is cocomplete, has a subobject 
classifier for well-turned subobjects, and has exponentials for degenerate 
empirical sets. These are the topics of Section 2. Section 1 is devoted to 
preliminary considerations on Boolean set theory. We have made every effort 
to render the paper as accessible as possible. As for category theory and 
topos theory in particular, familiarity with MacLane (1971) up to Chapter V 
and an elementary textbook on topos theory such as Goldblatt (1979) should 
be more than sufficient. Even the definition of a geometric morphism is not 
a prerequisite. Since the details of the construction of V ~B) are appreciably 
tedious, we choose to use the category ~3~[9(B) of sheaves over B instead. 
We prefer to do everything as concretely as possible rather than pursue full 
sophistication. The rest of this section is devoted to preliminaries on orthogo- 
nal categories, manuals, and Boolean locales, in that order. For the details 
of orthogonal categories and manuals of Boolean locales the reader is referred 
respectively to Nishimura (1995a) and Nishimura (1993b), though familiarity 
with them is not obligatory. 

Orthogonal Categories 

A pair (,~', o~.s0 of a category ,r and a class o~.s~ of diagrams in ~ is 
called an orthogonal category if it satisfies the following conditions: 

(1) The category t~ has an initial object. 
f>, 

(2) Every diagram in o ~  is of the form {Xx --> Y}x~A. 
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(3) For any small family {X}a~A of objects in ~ there exist an object 
Y in ,~ and a family {fx}~A of morphisms fx: Xx ---> Y in ,~ 
such that the diagram {Xx ~ Y}x~A hes in o~,. 

(4) Given a small family {Xx}x~A of objects in ,~, if diagrams {Xx 
f~. gk 
---> Y}x~A and {Xx --> Z}X~A lie in Od~,, then there exists a unique 
morphism h: Y ---> Z in ,~ such that gx = h o fx for each k E A. 

g• Z t~ (5) Given diagrams {Yx ,~[-~of }X~A and {X~ ---> Yx}8~& (X ~ A) in 
~,  the diagram {X8 - ~  Z I h e A and 8 ~ Ax} lies in o ~  iff 

f8 
all the diagrams {Yx ~> Z}• and {X8 --> Yx}8~& (h E A) lie 
in o ~ ,  where the sets A x are assumed to be mutually disjoint�9 

(6) I fadiagram { X s - ~ Y I h  ~ A a n d 8  e Ax} hes m ov~,,~ then 
nh 

there exist diagrams {X8 ~ Zx}8~& (X e A) and {Zx ~ Y}xsa 
such that f8 = hx o g8 for any X E A and any 8 ~ Ax, where 
the sets A~ are assumed to be mutually disjoint. 

ra 
(7) If {Xx ~ Y};~ea is a diagram in ,~ and {Zs -~ Y}a~a is also a 

diagram in ,q with Z8 being an initial object of ~' for each 8 e 
fx 

~, then the diagram {Xx ~ Y}xsa is in 0~, iff the diagram {Xx 
Y}x~a U {Z~ ~ Y}8~ is in o~,.  

(8) If f: X ~ Y is an isomorphism in ,~, then the diagram {X J~ Y} 
lies in od~,. 

(9) Given a diagram {Xx f-~ Y}X~A in Od~, if fx~ and fxz happen to 
be the same morphism for some distinct hi, )k2 ~ A ( so  that 
Xx~ = Xx0, then Xx~ = Xx2 is an initial object of ,~. 

(10) If a dmgram { X ~ Y} hes in o,.~,, then f is an isomorphism. 
rx 

(11) Given diagrams {Xx ~ Y}X~A and {Xs ~ Y}8~a in ~,  if both 
�9 fx fx 

the diagram {Xx --> Y}X~A and the diagram {Xx ---> Y}X~A U 
{X8 ~ Y}8~a are in o~., then X~ is an initial object for each 8 
~A .  

Unless confusion may arise, the category ,~ itself is called an orthogonal 
category by abuse of language. A diagram {Xx ~ Y}X~A in 06.s~, is called 
an orthogonal sum diagram, in which Y is called an orthogonal sum of Xx's 
and is denoted by EX~A �9 Xx. Thus the class o~, is the class of orthogonal 
sum diagrams in ,~. A morphism f: X --~ Y is called an embedding if there 
exists a morphism g: Z ~ Y in ,~ such that the diagram X .L> y ~_ Z lies 
in o~,.  Two embeddings f: Y ~ X and g: Z ~ X with the same codomain 
are said to be equivalent if there exists an isomorphism h: Y -4 Z in ,~ such 
that f = g o h. An object in ~ is called trivial if it is an initial object of ,~. 
A trivial object of ,~ can be regarded as the orthogonal sum of the empty 
family of objects in ,~. 
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Manuals 

Let ,ff be an orthogonal category and N a subcategory of it. A diagram 
in ,~ is said to be in N if all the objects and morphisms occurring in the 
diagram lie in N .  Objects X and Y of ~ are said to be N-orthogonal, in 

�9 . f g 
notation X l,j:e Y, if there exists an orthogonal sum diagram X ---> Z ~ Y 
of ,~: lying in N .  An object of N is said to be N-trivial if it is a trivial 
object of ,{ff and also an initial object of ~2~. An object X of ~ is said to be 
N-maximal if for any object Y of ~])~, X • Y implies that Y is N-trivial. 
Objects X and Y of ~ are said to be ~-equivalent, in notation X ---~ Y, 
provided that for any objects Z of ~2~, X 2 ~  Z iff Y • Z. Obviously N -  
equivalence is an equivalence relation among the objects of N .  We denote 
by [X]v~ the equivalence class of an object X of N with respect to N -  
equivalence. An orthogonal sum diagram {Xx -~ X}x~A of ~' lying in N is 
said to be an orthogonal ~-sum diagram if for any orthogonal sum diagram 

{Xx ~ X'}X~A of ~ lying in ~ the unique morphism g: X --> X' of ,r with 
g o f• = t[ for any k e A belongs to N ,  in which X is called an orthogonal 
s))2-sum of Xx's and is denoted by ~X~A @,~ X• If A is a finite set, say, A 
= { 1, 2}, then such a notation as X~ ~,~ Xz is preferred. Note that an N -  
trivial object of ~32, if it exists, can be regarded as an orthogonal 93• of 
the empty family of objects of ~2~. A morphism f: X --+ Y is called an N -  
embedding if there exists a morphism g: Z ---> Y such that the diagram X 
--+ Y ~- Z is an orthogonal N-sum diagram. Given objects X and Y of N ,  
if there exists an N-embedding f: X ---> Y in ~ ,  then we say that X is an 
N-subobject of Y. 

Given an orthogonal category ,~, a manual in ,~, or a ,r for 
short, is a small subcategory of ,~ abiding by the following conditions: 

(12) For any pair (X, Y) of objects in s)32, there exists at most a sole 
morphism from X to Y in N .  

(13) There exists at least a trivial object of t~ in ~21~. 
(14) Every trivial object of ~ in N is N-trivial. 
(15) For any objects X, Y in N ,  if there exists a morphism from X 

to Y in N ,  then Y • Z implies X • Z for any object Z in ~)~. 
(16) For any objects X, Y in N with X l ~  Y, there exists an object 

Z of the form Z = X O ~  Y in ,~'. 
(17) For any object Z of the form Z = X O,~jI Y in N ,  X l ~  W and 

Y • W imply Z • W for any object W in N .  
(18) For any objects X and Y in N ,  X ---~j~ Y iff there exists an object 

Z in ~ such that X •  Z, Y •  Z, and both of X O,jj~ Z and 
Y O ~  Z are ~gLmaximal. 
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(19) For any commutative diagram 

X f >Y 

Z 

of ,~, if f is in ~J~ and h is an ~3~-embedding, then g is in ~))~. 

A ,eft-manual ~ is said to be rich if it satisfies the following condition: 

(20) For any object X in ~ and any embedding f: Y ~ X in ,~', there 
exists an ~-embedding f': Y' --~ X in s)3~ such that f and f' are 
equivalent in ~. 

A ~-manual s)Yd is said to be completely coherent if it satisfies the 
following condition: 

(21) For any infinite family {Xx}x~a ofpairwise ~.PLorthogonal objects 
in ~ ,  there exists an object Z in ~ with Z = E• O,jj~ Xx. 

Boolean Locales 

The category of complete Boolean algebras and complete Boolean homo- 
morphisms is denoted by 23o0[. The dual category of ~oo~ is denoted by 
23520r Its objects are called Boolean locales. If we regard a Boolean locale 
X as an object in ~oo~, it is often denoted by ~P(X) for emphasis, though 
X and ~(X) denote the same entity. The opposite fop of a morphism f: X 
Y in ~352or which is a complete Boolean homomorphism from ~(Y) to 
~(X), is usually denoted by ~(f). The category ~52or is cocomplete, and 
the pair ( ~ o c ,  c~0,~o,.) is an orthogonal category, where cP,z~oc is the class 
of coproduct diagrams in ~J2oc. Unless stated to the contrary, the category 
~52oc is to be regarded as an orthogonal category in this sense. 

A completely coherent rich manual in the orthogonal category ~ 2 o c  is 
called a manual of Boolean locales. A pristine example of a manual of 
Boolean locales can be provided by an arbitrary complete Boolean algebra 
B. For each p ~ B we denote by Xp the Boolean locale with ~(Xp) = B Ip 
= {q ~ BIq --< p}. The first-class Boolean manual ~3~B of Boolean locales 
over B is a subcategory of the category ~ o c  whose objects are all Xp 
(p E B). A morphism f: Xp ---) Xq of Boolean locales with p, q E B lies in 
97~B iff p --< q and ~(f ) (x)  = x A p for any x E ~(Xq). 

Given a Boolean locale X, we denote by Ex the Stonean space of the 
complete Boolean algebra ~(X). Under the so-called Stone duality, each 
p E ~(X) corresponds to a clopen (closed and open) subset of Ex, which 
is denoted by = ~"~X,p- 
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1. BOOLEAN SET THEORY 

This section is essentially a review, and the reader is referred to Bell 
(1988), Goldblatt (1979), Johnstone (1977), or MacLane and Moerdijk (1992) 
for the general theory of topoi. For pedagogical reasons the exposition is a 
bit more leisurely than it should be in a technical paper. To make the paper 
accessible to a larger audience, we do not pursue full sophistication or full gen- 
erality. 

As remarked in Nishimura (1993b, p. 1297), every poset and every 
complete Boolean algebra B in particular can be regarded as a category. The 
objects of the category B are the elements of B. Given a pair (p, q) of objects 
of the category B, it is always the case that there exists at most one arrow 
from p to q, and there is one iff p <--- q. We denote by @rt~ the category of 
sets and functions. A presheaf over B is a contravariant functor ~ from the 
category B to the category @rt~, in which, given p, q e B and x e ~ ( q )  
with p -< q so that there exists a unique arrowfq,p from p to q in the category 
B, we often write S~p,q(X) for ~l(fq,p)(x). 

A (possibly empty) family {Px}X~A of  nonzero elements of B is called 
a partial partition of unity of B if Px A PX' = 0 for any X v~ k'.  Given two 
partial partitions {Px}x~A and {qx}x~r of unity of B, the former is said to be 
a refinement of the latter if 

VX~A Px = V ~ r  q• (1.1) 

and 

for any k E A there exists "V e F such that p• ----- qx (1.2) 

A presheaf ~ /over  B is called a sheaf over B if for any partial partition 
{Px}xEA of unity of B and any family {Xx}x~A with xa e ~(px)  for each k 
e A, there exists a unique x e ~/(vx~A px) with ~/px,,a~Apx(X) = XX for each 
k e A. Every presheaf ~ over B has its associated sheaf ~ /ove r  B, which 
is called the sheafification of ~1. For each p e B we denote by ,~(p) the set 
of all families {(xx, PX)}X~A such that 

{Px}x~A is a partial partition of unity of B with 

V~.eA Pk = P (1.3) 

xx e N(Px) fo r  each X e A (1.4) 

Let ~ ( p )  be the quotient set of ~ ( p )  with respect to an equivalence relation 
--~,p on ~ (p ) ,  where 

{(Xx, P• --~,p {(Yx, qx)}~Er iff {Px}x~A and {qx}v~r have 
a common refinement {re}~ ~ such that ~r~,px(xx) = 
S~r~,qx(Yx) whenever r e --< Px and r e <-- qx. (1.5) 
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We denote by [{ (xx, px) } x ~ A]~,p the equivalence class of an element { (xx, 
Px)}x~h of ~ ( p )  with respect to =~,p. For any p, q E B with p ~ q, we let 

~v,q([{(xx, qx)}X~A]_=~,q) = [{(S~q~.,cp(X~.), qx A P)}X~A]~-~,~ 

We denote by ~ ( B )  the category whose objects are all presheaves 
over B and whose morphisms are all natural transformations between such 
contravariant functors. We denote by 2 ~ b ( B )  the full subcategory of 
~ ( B )  whose objects are all sheaves over B. If B is regarded as a Boolean 
locale X, the categories ~ ( B )  and ~ b ( B )  are denoted also by ~ ( X )  
and ~ b ( X ) ,  respectively. It is easy to see that the assignment to each 
presheaf ~ /ove r  B of ,~/and to each morphism ~ : ~ --4 ~ in ~ ( B )  of 
a morphism ~': ~ / ~  ~ in ~ ) ( B )  with 

Jp([ { (x~, Px) } ~ ~ A]---~,p) = [ ( (J px(XX), PX) } X ~ A]---~,p 

for eachp e B is a functor from 2 ~ I ) ( B )  to ~ ) ( B ) ,  which is denoted by 
Cvsf~. It is easy to see the following result. 

Theorem 1.1. The functor C,~tj: 23~(3(B) --9 2 ~ ) ( B )  is left adjoint to 
the inclusion functor ~ :  23@~9(B) --9 ~ I ~ ( B ) .  

We now give an alternative description of  the category ~ ) ( B ) .  A B- 
valued set is a pair (X, [[. = �9 ~ )  of a set X and a function [[. = �9 ~ :  X • 
X ~ B satisfying 

]Ix = x']]x B = ~x' = X]]x n (1.6) 

[Ix = X'~x B A [Ix' = x"~x n --< [Ix = x"~  (1.7) 

for all x, x', x" ~ X. The B-valued set (X, 1[.=.  ~ )  is often denoted by X 
unless serious confusion may arise. 

Given a B-valued set (X, [ [ .= '  ]]xB), a function eu X --~ B is called a 
singleton if it satisfies 

~(x) A ~x = x ' ~  - ~(x') (1.8) 

c~(x) A et(x') --< [Ix = X'~x B (1.9) 

for all x, x' E X. It is easy to see that any x ~ X gives rise to a singleton 
{x} assigning to each x' ~ X the set [Ix = x ' ~  E B. The B-valued set (X, 
[[. =-]Ix B) is said to be complete if every singleton is of the form {x} for a 
unique x e X. A B-valued set (X, ~. = .]]xB), even if it is not complete, can 
give rise canonically to a complete B-valued set 0(, [[" ="  frO, where X is the 
set of singletons of the B-valued set (X, [[. = .  ~ )  and [[o~ = [3]~ = V~x (c~(x) 
/x [3(x)) for all a, [3 in )f. The B-valued set (X, ~" = .  ~ )  is called the completion 
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of (X, [[. =-~x~). We denote by ~3@n6(B) the category whose objects are all 
B-valued sets and whose morphisms from a B-valued set (X, [[-=.]]x ~) to 
another B-valued set (Y, ~. = "]~v) are all functions f: X • Y ~ B satisfying 

~x = x']]~ A f(x,  y) <-- f (x ' ,  y) (1.10) 

f (x ,  y) A b = Y ' ~  <- f(x ,  y') (1.11) 

f (x ,  y) A f (x ,  y') <-- b = Y']]~V (1.12) 

Vyeyf (X , y) = [Ix = x ~  (1.13) 

for all x, x' ~ X, y, y' ~ Y The full subcategory of 23~n6(B) whose objects 
are all complete B-valued sets is denoted by ~@n6(B). If the complete 
Boolean algebra B is regarded as a Boolean locale X, then categories 
~3@n~(B) and ~3~n6(B) are denoted also by ~3@n~(X) and ~ n 6 ( X ) ,  
respectively. It is easy to see that the assignment to each B-valued set (X, 
~. = .  ]Ix ~) of its completion (J?, [[. = .  ]]~) and to each morphism 

f.. (x,  (r, 
of the morphism 

( 2 ,  = .  

with 

jT(~, [3) = v (ct(x) ^ [3(y) ^ f ( x ,  y)) for all ot E J~ and all [3 E I7" 
xEX 
y c Y  

is a functor from ~3~n~(B) to 23~llg(B), which is denoted by C,~n~. The 
following result is well known. 

Theorem 1.2. The functor C,z~t~n~: ~@ng(B)  ---) 23@rig(B) is left adjoint 
to the inclusion functor i~n~:  ~@n~(B) --~ ~ n ~ ( B ) .  

Now we are going to show that categories ~ ) ( B )  and ~ n d ( B )  are 
equivalent. First we define a functor ~:  ~ ( B )  --> ~ n d ( B ) .  Let ~ be a 
sheaf over B. We define a set Xa to be the disjoint union of ~(p) ' s  for all 
p ~ B. We define a function [[- = . ~ :  X~ • Xa --~ B as follows: 

[[x=y]~a = sup{r E BIr<- - -pAqand~r ,p (x )=~r ,q (y ) }  (1.14) 

for x ~ ~/(p) and y ~ ~(q).  It is easy to see that (Xa, I[" =" ~a)  is a complete 
B-valued set, which shall be dp(~). Let ~ : ~/--~ ~ be a morphism in ~ ( B ) .  
We define a function f :  X~ X X~ -~ B as follows: 

f ( x ,  y) = sup{r ~ B l r  <- p A q and dr(~r,p(X)) --~ ~ff3r, q(y)} (1.15) 

for x ~ s~(p) and y ~ ~(q).  It is easy to see that f is a morphism from 
~(M) to ~ ( ~ )  in ~@n6(B),  which shall be dp(~ ). 
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Now we will define a functor ~ :  ~@ng(B) ~ ~ ) ( B ) .  Let 
(X, ~ . = . ] x  ~) be a complete B-valued set. We define a presheaf ~ x  over B 
as follows: 

Nx(P)= {x a X [ ~ x = x ] x  a - - p }  for p ~ B (1.16) 

For p, q e B with p ~ q and x ~ ~l(q), (Mx)pq(x) shall be 
the element of X corresponding to the singleton 
y ~ X ~ x = y ~ ^ p  (1.17) 

It is easy to see that s~ x is a sheaf over B, which shall be ~((X, [[.=-]]x~). 
Let f: (X, ~. = -Ix B) ~ (Y, [[. = .]Iv B) be a morphism in ~@n,3(B). For each p 

B we define a function (@~: Six(p) --~ s~r(p) assigning to each 
x ~ S~x(p) the element (~f)p(x) of Y corresponding to the singleton y ~ g 

sup{fix, y') A [[y = y '~ ly '  ~ Y}. It is easy to see that the range of ((f)p 
is contained in s~r(p), so that (Sr)e can be considered to be a function from 
~x(P) to s~r(p). It is also easy to see that the assignment ~f to each p ~ B 
of the function (5tf)p: S~x(p) ~ ~r(p)  is a morphism from ~((X, [[- -- .]]x~)) 
to ~((Y,, [[. = .]]~)) in 23@b(B), which shall be q~(f). 

It is not difficult to see the following result. 

Theorem 1.3. 't t o dO is naturally equivalent to the identity functor I,z~e~(m 
of the category ~ b ( B ) ,  and q~ o ~ is naturally equivalent to the identity 
functor I,~e,~(B) of the category ~ n ~ ( B ) ,  so that categories ~@D(B) and 
~@n~(B) are equivalent. 

The category 23@~(B) as well as the category 23@rt~(B) are known to 
constitute a Boolean localic topos, and Theorem 1.3 is only a special case 
of the well-known theorem that a Boolean localic topos is determined uniquely 
up to equivalence by the complete Boolean algebra of the elements of its 
subobject classifier. 

Let f: X --+ Y be a morphism in 231~oc. We are now going to define 
functors f,: ~ b ( X )  ~ 23~I?(Y) and f,: ~,~f)(Y) --) 23@~(X), which are 
to be called the direct image functor of f and the inverse image functor of 
f, respectively. It is easy to see that for any sheaf N over @(X), N o @(f) 
is a sheaf over @(Y), which shall be f , ~ .  It is also easy to see that for any 
morphism ~: s~ --> 3] in ~ ( X ) ,  ~ @(f) is a morphism from f . ~  to f,3] in 
2 3 ~ ( Y ) ,  which shall be f.~. 

To define the inverse image functor f*: ~@~)(Y) --~ 23@~)(X), we first 
define a functor _f*: ~@n~(Y) --+ 23@n~(X), which shall assign to each 

object (Y,, [[-=.]]~(v)) in 23~ng(Y) the object (Y, @(f)(~.=.]]~/v))) in 
~3@rt~(X) and to each morphism f: (X, ~. =-~x ~(v)) ~ (y  ~-= .~(v)) in 
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~@n~(Y) the morphism 

@(f) of: (X, @(f)(~. =-~x~(v))) --> (Y, @(f)(~-=-~v(v))) 

in ~@llg(X). We now define f* to be �9 o C,z~n~ o f * o ~. 
Now it is not difficult to see the following resul(. 

Theorem 1.4. The functor f*: ~)~3(Y) --> ~ b ( X )  is left adjoint to 
the functor f,: ~ ) ( X )  --> ~ b ( Y ) .  It is also left exact. 

By using the nomenclature of topos theory, the above theorem claims 
that the pair (f,, f*) is a geometric morphism from the topos ~ ) ( X )  to the 
topos ~ ( Y ) .  

Let f: X --e Y and g: Y --> Z be morphisms in ~ o c .  It is easy to see 
that (g o f), = g, o f,. It is also easy to see that the functors (g o f)* and 
f* o g* are naturally isomorphic. 

Given a Boolean locale X, since the category ~ b ( X )  is a Boolean 
localic topos, it enjoys all classical mathematics (= mathematics based on 
classical logic). Now we will determine concretely sheaves 3- x and ~ x  
standing for the subobject classifier and the set of real numbers within 
~ 3 ( X ) ,  respectively. The sheaf ~--x goes as follows: 

3-x(p) = {(r, p)lr ~ ~(X) and r -< p} for each p e ~(X) (1.18) 

(3-x)qp((r, p)) ---- (r ^ q, q) for p, q e ~(X) with q --< p (1.19) 

The sheaf ~ x  goes as follows: 

For each p e ~(X), ~tx(p) is the totality of 
where two real-valued Borel functions on -X.p, 

real-valued Borel functions on = are ~"~ X,p 

identified so long as they coincide except some 
meager Borel subset of EX.p (1.20) 

For p, q e ~(X) with q <- p, (~X)qp assigns to each 

f ~ ~x(P)  the restrictionf[~x,q of f to ~X,q (1.21) 

Let f: X ---> Y be a morphism in 2~s We are going to discuss the 
relationship between ~-x and 3--v and that between ~ x  and ~v. 

Proposition 1.5. There is a natural morphism 3-~: 3-v ~ f.O-x in 
2 ~ ) ( Y ) .  

Proof Note that (f,O-x)(p) = 3x(~(f)(p)) for each p e ~(Y). We set 
(~-~p((r, p)) : (~(f)(r), ~(f)(p)) for each (r, p) ~ ~-v(P)- It is easy to see 
that 3-~ is indeed a morphism from 3-- v to f , 3 x  in ~)~)(Y).  �9 

Proposition 1.6. The left adjunct ~-~: f*~-v --> ~--x of 3"r g is an isomor- 
phism in ~@~)(X), 
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Outline of  the Proof qb(f*~-v) is naturally identified with C,z~a~ 
(_f *(qb(ff-v))), which is in turn identified with ~(~-x). To see this, note that 
each (r, p) ~ ~( f fv)  determines a singleton Okr, p ) on f*(qb(~-v) ) by 

et~,p)((s, q)) = (r O )(f)(s))  ^ p A ) ( f ) (q )  for each 

(s, q) ~ ~($-v), where O stands for the symmetric 
difference in the complete Boolean algebra ~(X),  
and note that the underlying set of  qb(~v) and 
that of f*(qb(Ov)) are the same 

We should note also that 

~(r, p) -- (r', ' ~x  

(1.22) 

= V et(~,p)((s, q))/x a~r,p,)((s, q)) 
(s,q) E ~(~y) 

for all (r, p), (r', p ')  ~ ~P(~-x) (1.23) 

It is not difficult to see that ~ ( ~ )  renders this identification between C,z~e,~ 
(f*(O(~-O)) and qC(~-x). Therefore ~-t is an isomorphism. 

Proposition 1.7. There is a natural morphism ~t~: ~ v  ---> f*~tx in 
~ 3 ~ ( Y ) .  

Proof Note that (f*~x)(P) = ~x(~(f ) (p) )  for each p ~ ~(Y).  We set 
(~Op( f )  = f o  ~x.v.p for e a c h f  ~ ~v(P).  It is easy to see that ~ '  is indeed 
a morphism from fftv to f.3tx in 23~)(Y).  [] 

In the next section we will use such self-explanatory notations as 
Homx(.-~, 33) for the totality of morphisms from ~ to 33 in 23~b(X).  

2. EMPIRICAL SET THEORY 

To begin with, we define a category to be denoted by ~ n ~ .  Its objects 
are all pairs (X, .~) of a Boolean locale X and a sheaf ~ over the complete 
Boolean algebra ~(X).  Given two such pairs (X, ..~) and (Y, 33), the morphisms 
from (X, .~) to (Y, 33) in 23@Itd are all pairs (f, f ~  of a morphism f: X -9 
Y in ~;~oc and a morphism f#: 33 -9 f,~/in ~ ) ( Y ) .  By dint of  the canonical 
adjunction Homx(f*~ ,  ~/) --- Homv(33, f,M), the morphism (f, f#): (X, ~/) 
---> (Y, 33) can be represented also by (f, f#), where f#: f '33  -9 ,~ is the 
morphism in ~ ) ( X )  corresponding to the morphism f#: 33 -9  f * ~ / i n  the 
above adjunction. The corresponding representations (f, f ~  and (f, f#) of the 
same morphism are called the upper and lower representations, and they will 
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be used complementarily according to the context. Given morphisms (f, 
f~): (X, s~) --+ (Y, ~)  and (g, g~): (Y, ~)  ---> (Z, q~) in ~ n d ,  their composition 
(g, g~) o (f, if) is defined to be (g o f, (g,f~) �9 g~), where we loosely identify 
g.(f*s~) with (g o f)..~. As for the lower representation of composition of 
morphisms in ~3@rt~, we have the following result. 

Proposition 2.1. If (f, f#): (X, s~) --> (Y, ~)  and (g, g~): (Y, ~)  ---> (Z, 
~) are represented lowerly by (f, fe) and (g, g#), respectively, then their 
composition (g, g#) o (f, f#) is represented lowerly by (g o f, f# o (f.g#)), 
where we loosely identify f*(g*~) and (g o f).c~. 

Proof By chasing f# around the commutative square 
Homx (f'g*%, s~) =_ Homy (g*~, f .  sg) 

1 l Homx if*g#, s~) Horny (g#, f ,N) 

Homx (f*~, N) -~ Homv (~, f ,  M) 

we have 

f#off*g#)) > f#og# 

2 2 
f#1 ) f#  

By chasing g# around the commutative square 

Horny (g*q~, ~)  ~ Homz (<(~, g.  ~ )  

Homv (g* ' ,  f#) ~ 1 H o m z ( ' , g . , ' )  

Horny (g*~, f. N) ~ Homz (qg, g .  f ,  s~) 

we have 

g#1 > g# 

f#~ ) (g,f#)og# 

Thus f, o if*g#) corresponds to (g.ff) o g# under the canonical adjunction 
Homx(f*g*%, s~) ~ Homz(~, g.f.s~). �9 

We denote by | the forgetful functor from 23@rid to 2352oc. That is to 
say, | ~)  = X for any object (X, s~) in ~@rtd and | f~) = f for any 
morphism (f, if) in ~@nd. 



Empirical Sets 241 

As in Nishimura (1995b, Proposition 3.2), it is easy to see the follow- 
ing result. 

Proposition 2.2. ( ~ n 6 ,  cP,~n~) is an orthogonal category, where 
r denotes the class of coproduct diagrams in ~@n6. 

Outline of the Proof Here we give only the coproduct construction in 
the category ~ t l 6 .  Let {(Xx, ~x)}x~A be a small family of objects in 
~ n ~ .  We note that the coproduct of the family {Xx}x~A in ~52OC is given 
by X with ~(X) = IIx~A ~(Xx). The desired coproduct of {(Xx, ~X)}xEA 
in 23~rt6 is given by (X, M), where M((Px)xEA) = I-Ix~A Mx(Px) for any 
(Px)x~A in ~'(X). [] 

In the remainder of this paper the category 23~rtd is to be regarded as 
an orthogonal category in the above sense unless stated to the contrary. 

Given a manual s)~ of Boolean locales, we now define a category to be 
denoted by @@n~(s)J~). Its objects are all functors ~: ~ -~ ~ I I ~  satisfying 
the following conditions: 

(2.1) It maps orthogonal ~ - s u m  diagrams to orthogonal diagrams 
in ~ n 6 .  

(2.2) @ o ~ is the identity functor. 

Let ~ be such a functor. For any Boolean locale X in ~ ,  if ~(X) - 
(X, ~) ,  then ~/ is  denoted by ~sh(X). For any morphism f: X ---> Y in ~.~, 
if ~(f) = (f, f~), then f#: ~sh(Y) --> f*~sh(X) is denoted by ~#(f) and 
f#: f*~sh(Y) ~ ~sh(X) is denoted by ~#(f). 

Given such functors ~ and 65, morphisms from ~ to 63 in ~rt~(~Y~) 
are all assignments q~ to each Boolean locale X in ~ of a morphism q~x: 
~sh(X) ~ 65sh(X) in ~ ) ( X )  satisfying the following condition: 

(2.3) # For any morphism f: X --> Y in ~3~, the diagram 

~# (f) ~s~ (Y) > f,~. (x) 

'P~ I ~ f,~x 
65Sh (Y) 65# (g) > f*65sh (X) 

is commutative. 

Proposition 2.3. The above condition (2.3) # is equivalent to its following 
lower version: 
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(2.3)# For any morphism f: X ~ Y in ~3~, the diagram 

~# (f) 
f * ~  (V) ) ~ (X) 

f* @sh (Y) > 6is, (X) ~#  (f) 

is commutative. 

Proof. The equivalence of (2.3) # and (2.3)# follows readily from the 
following commutative diagram: 

Homv (~s~ (Y), f*~sh (X)) 
/ 

Horny (~Sh (Y), f*q~x) [ 
"4/ 

Horny (~s~ (Y), f*6is~ (X)) 

Homr (qOv, f,6iSh (X)) "f 
/ 

Homv (6is~ (Y), f*~s~ (X)) 

=- Homx (f* ~sh (Y), ~sh (X)) 

l Homx (f* ~sh (Y), q~x) 

= Homx (f* ~sh (Y), @sh (X)) 

l Homx (f*q~v, ~s ,  (X)) 

= Homx (f* ~s~ (Y), filSh (X)) �9 

The composition 0 o q0 of morphisms t?: ~ --~ (~ and ~: ~ --> �9 in 
@~nd(~J)2) is defined to be the assignment to each Boolean locale X in 9J~ 
of Ox o q~x. For each Boolean locale X in ~ we denote by Ax the forgetful 
functor from ~@ne2(~J~) to ~ ( X ) ,  which assigns to each object ~ in 
@@rt~(~J)2) the object ~sh(X) in ~ ( X )  and to each morphism q0: ~ --> 63 
in @~nS(~)  the morphism q~x: ~sh(X) --> ~sh(X) in ~ 9 ( X ) .  

Each object of @~n~(~)  is called an empirical set over ~J)~, and the 
category ~rtS(~J)2) is called the empirical set theory over ~ .  

Before embarking upon the general theory of empirical set theory, we 
present some examples of empirical set theories and empirical sets, which 
will put down our midair notions onto earth. 

Example 2.4. Let B be a complete Boolean algebra and ~9~8 the first- 
class Boolean manual of Boolean locales over B. It is easy to see that the 
category ~ n ~ ( ~ B )  is equivalent to the category ~ ( B ) .  

This example shows that our empirical set theory @~n6(~J32) over an 
arbitrary manual ~ of Boolean locales is a natural generalization of Boolean 
set theory. 

We will keep ~J)2 denoting an arbitrarily chosen but fixed manual of 
Boolean locales up to the very end of this section. 
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Example 2.5. We will define an empirical set ~ over ~ ,  which is 
intended to stand for the empirical set of truth values within the empirical 
set theory @@~t~(~JY~). For each Boolean locale X in ~ ,  we set ~(X) = ~-x. 
For each morphism f: X ~ Y in ~)~, Proposition 1.5 shows that there is a 
natural isomorphism ~( :  ~-v --~ f*~-x, which shall be taken as ~#(f). It is 
not difficult to see that ~ is indeed a well-defined empirical set over ~)~. 

Example 2.6. We will define an empirical set ~ over ~)Y~, which is 
intended to represent the empirical set of real numbers within the empirical 
set theory ~@H~(~).  For each Boolean locale X in ~J~, we set ~(X) = ~tx. 
For each morphism f: X ---> Y in ~s Proposition 1.7 shows that there is a 
natural isomorphism ~t/~: ~ v  ~ f*~x, which shall be taken as ~#(f). It is 
not difficult to see that ~ is indeed a well-defined empirical set over ~J)2. 

Now we are going to show that, roughly speaking, the category 
@~t,3(~,R) is not a topos only in that exponentials do not exist in general. 

Proposition 2.7. The category @~rt~(~))?) has products for any small 
family of objects. 

Proof Let {~x}X~A be a small family of objects in ~n~3(~))~). For 
any Boolean locale X in s)y~, since ~ ? ( X )  is complete, there exists a 
product diagram 

{~2~X (~PX)~ (~h)sh(X)}k~ A in ~@[?(X) 

For any morphism f: X ~ Y in s)3~, since the functor f,: 23@~(X) --> 23@I9(Y) 
preserves limits, 

{ f*'~X f*(~x)~ f*(~X)sh(X) } }, s A 

is a product diagram in ~@~)(Y). Therefore there exists a unique morphism 
f#: sgy --> f*Nx in ~3~)(Y) such that (~x)#(f) o (~Px)Y = (f*(cpx)x) o f# for 
any k ~ A. It is not difficult to see that there exists a unique object ~ in 
~@t~g(~21~) such that ~sh(X) = ~gx for any Boolean locale X in ~ and 
~#(f) = f# for any morphism f in ~2~. It is easy to see that the assignment 
q~x to each Boolean locale X in ~)2 of (~Px)x is a morphism from ~ to ~x for 
each k E A. Now it remains to show that for any family {Cs) ~+x ~x}X~A 
of morphisms in ~@rt~(~))2), there exists a unique morphism X: (~ ~ ~ with 
q~x o X = qJx for any k e A. Since 

is a product diagram in ~ ( X )  by definition for each Boolean locale X in 
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~Ys there exists a unique morphism Xx: (~3sh(X) --'> ~sh(X) in ~ ( X )  with 
(q~a)x o Xx = (Ox)x for all k ~ A. Thus it suffices to show that for any 
morphism f: X --~ Y in s23~, ~#(f) o XY = (f*Xx) o (~#(f), for the assignment 
X to each Boolean locale X in ~J~ of Xx would be the desired morphism in 
~@rt~(s))~). For each h ~ A we have a commutative diagram 

~" ~s , (Y)  ~#(10 )f*~sh(X) ( 

Zv (~)sh (Y) ~ (f) > f , (~)s .  (x) 

T "l (~)~ f*(~)• 

Sh ( ) ) f* qfSh (X) - -  

in 2 ~ ( Y ) ,  for which we get 

Since 

(f*(q~• o (f*Xx) o (~#(f) 

= (f*(Ox)x) o ~#(f) 

= (~x)~(f) o (*x)v 

= (f*(q0x)x) o ~#(f) o Xv 

f*Zx 

is a product diagram in 2 ) ~ ( Y ) ,  ~#(f) o XY = (f*Xx) o ~ ( f ) ,  which was 
the desired equality. �9 

By the same token, we have the following result. 

Proposition 2.8. The category @@Itd(sJ)2) has equalizers for any paral- 
lel morphisms. 

Theorem 2.9. The category @~nd(~J)~) is complete. 

Proof. It is well known that a category of products and equalizers is 
complete, for which the reader is referred, e.g., to MacLane (1971, Chapter 
V, w Therefore the desired result follows from Propositions 2.7 and 2.8. �9 



Empirical Sets 245 

The proofs of Propositions 2.7 and 2.8 give also the following result. 

Proposition 2.10. Given a diagram F: J --+ ~ n 6 ( ~ )  and a cone 'r: 
---b F in @@ne_,(~), -r is a limiting cone iff the cone Ax o "r: Ax@) --'-'-b Ax 
o F is a limiting cone in ~@~(X) for any object X in ~232. 

The discussion from Proposition 2.7 through Proposition 2.10 can be 
dualized. 

Proposition 2.11. The category ~rt~(~.l~) has coproducts for any small 
family of objects. 

Proof Let {~%}X~A be a small family of objects in ~n~3(sJ)2). Let X 
be a Boolean locale in ~JJ~. Since 2 3 ~ ( X )  is cocomplete, there exists a 
coproduct diagram 

{(~X)sh(X) (*~'~ S~X}X~A 

in ~ 3 ~ ( X ) .  Let f: X ~ Y be a morphism in sJ)2. Since the functor 
f*: ~@[?(Y) ---> ~3@~(X) preserves colimits, 

{f*(~X)sh(Y) r ~  f*'~Y}XEA 

is a coproduct diagram in ~ O ( X ) .  Therefore there exists a unique morphism 
f#: f*~/v ~ ~ x  in ~ O ( X )  such that (~%)x o @x)#(f) = f# o (f*(r for 
any h ~ A. It is not difficult to see that there exists a unique object ~ in 
@@n6(~))~) such that ~sh(X) = -~/x for any Boolean locale X in ~33~ and 
~#(f) = f# for any morphism f in ~s It is easy to see that the assignment 
q~x to each Boolean locale X in s)32 of (q~x)x is a morphism from ~• to ~ for 
each h E A. Now it remains to show that for any family {~x ~*x (~}x~A 
of morphisms in @@rt~(~)~), there exists a unique morphism X: ~ ---) 63 with 
X o ~Px = 0x for any h ~ A. Since 

6"sd )}X~A 

is a coproduct diagram in 2 3 ~ ( X )  by definition for each Boolean locale X 
in 7)2, there exists a unique morphism Xx: ~sh(X) --~ @sh(X) in ~3~I)(X) 
with Xx o (qO~)x = (~x)x for all k E A. Thus it suffices to show that for any 
morphism f: X ~ Y in ~ ,  Xx o ~#(f) = (~#(f) o (f*xv), for the assignment 
X to each Boolean locale X in ]~J~ of Xx would be the desired morphism in 
@~It6(~3)2). For each X ~ A we have a commutative diagram 
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f'* ~sh (Y) 

f*(%,)v l 

f'*zv f*(~)Sh (Y) 

f*(*)u l 

> f*l~Sh (Y) 

in 23| for which we get 

Since 

~#(f) > ~ (x) 

! (~,)x 

(~)#(f) > ( ~  (X) 

(~)x 

t~#(f) )6~sh (X) < 

Xx 

(~#(f) O (f*XY) O (f*(~OX)X) 

= 63"(f)  o ( f * ( , x ) y )  

= (*x)x o (~x)#(f) 

= Xx o ( ' ~ ) x  o ( ~ ) #  

= XX �9 ~#(f) �9 (f*(~0x)Y) 

{f*(~X)sh(Y) f*(tPk)~ f*~sh(Y)}x~A 

is a coproduct diagram in ~3@~(X), • o ~#(f) o = (~#(t3 o (f*xv), which 
was the desired equality. �9 

By the same token, we have the following result. 

Proposition 2.12. The category ~rt~(s2~) has coequalizers for any 
parallel morphisms. 

Just as Propositions 2.7 and 2.8 led to Theorem 2.9, Propositions 2.1 1 
and 2.12 lead to the following result. 

Theorem 2.13. The category ~@nd(932) is cocomplete. 

The proofs of Propositions 2.11 and 2.12 establish the following. 

Proposition 2.14. Given a diagram F: J --~ @~n~(~)~) and a cone "r: F 
~ in ~@rtd(~J)~), �9 is a limiting cone iff the cone Ax o "r: A x �9 F --'-'-3 Ax(~) 

is a limiting cone in ~ b ( X )  for any object X in ~ .  
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For each Boolean locale X in s)y~, we fix a terminal object /x  in the 
category ~ b ( X )  and denote by Tx the truth arrow Jx ~ 3-x in the topos 
~@~)(X). We denote by 1 the terminal object of @@n~(~) with lsh(X) = 
r for each Boolean locale X in ~ .  The assignment to each Boolean locale 

X in sJ)2 of Tx is easily seen to be a morphism 1 --+ ~, and is denoted by 
Y. The rest of this section is consecrated to showing that the morphism T: 
1 --~ ~ plays a role of a subobject classifier for a well-behaved class of 
subobjects, and that exponentials exist for highly degenerative empirical sets. 
To this end, we first need the following result. 

Proposition 2.15. A morphism q~: ~ --+ 63 in ~rtd(s))2) is a monomor- 
phism iff q~x: ~sh(X) ~ 63sn(X) is a monomorphism in 2 3 ~ ( X )  for every 
Boolean locale X in s2~. 

Proof We know well 
,~ and for a morphism f: a 

(cf. Schubert, 1972, 7.8.9) that in any category 
--* b in 9t, f is a monomorphism iff the diagram 

a ida 
) a  

idi l: 
a f >b 

is a pullback. Thus the desired result follows at once from Proposition 
2.10. [] 

A monomorphism q~: ~ --~ 63 in @@nd(~)~) is called a regular monomor- 
phism if the diagram 

f*~sh(Y) ~#(f) ) ~sh(X) 

o-I I 
f*63sh(Y) 63#(f) ) 63sh(X) 

is a pullback square for any morphism f: X --) Y in ~ .  Two regular monomor- 
phisms q~: ~ ~ 63 and t~: @ --> 63 with the same codomain 63 in ~rt~(~J)~) 
are said to be equivalent if there exists an isomorphism X: ~ --> ~ in 
@@rtr such that $ o X = ~ .An equivalence class with respect to this 
equivalence relation on the regular monomorphisms into 63 is called a regular 
subobject of 63. 

Theorem 2.16. For any regular monomorphism q~: ~ ---) 63 in @ @rt~(sJ)2), 
there exists a unique morphism X: 63 --) ~ making the diagram 
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l l 7- 
Z 

a pullback square. 

Proof If such • exists, then Proposition 2.10 claims that for each Boolean 
locale X in ~JJ~, Xx should be the unique morphism in the topos ~ ( X )  
making the diagram 

~sh(X) ~x > fish(X) 

l l -F" 
/x x > ~x 

a pullback square. Therefore it suffices to show that the family { • }x~ ObeSe) 
of morphisms Xx: ~sh(X) ~ ~-x thus chosen for all Boolean locales X in 

makes the diagram 

f*~sh(Y) f*Xv ) f*ffv 

~sdX) Zx > ~-x 

commutative for each morphism f: X -~ Y in ~ ,  which would guarantee 
that the assignment X to each Boolean locale X in ~))2 of • is the desired 
morphism in ~@rt6(~232). To see this, let us consider the diagram 

f*~Sh (Y) f*~{)Y ) f'r*@Sh (Y) 

~s~ (X) 'Ox > ~ (X) 

X 
/x ) ~x 
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Since the upper and lower squares are pullback squares, the outer rectangle 
is also a pullback square by the so-called pullback lemma (cf. MacLane, 
1971, Chapter III, w Exercise 8). Let us consider also the diagram 

f*~sh (Y) f*~~ ) f'*(~sh (Y) 

f'*~x ~ f*T l f'*zv 
f*/v v -> f*~v 

~ #  
7- X 

/x -5 ~x 

Since f* preserves pullbacks, the upper square is a pullback square, while 
Proposition 1.6 claims that the lower square is also a pullback square. Thus 
the outer rectangle of the above diagram is also a pullback square by the 
pullback lemma again. Since ~Pv: ~sh(Y) ~ (gsh(Y) is a monomorphism by 
Proposition 2.15 and f* preserves monomorphisms, the morphism f*q~y: 
f*~sh(Y) ~ f*(gsh(Y) is a monomorphism. Therefore the desired commuta- 
tivity of the second diagram follows. �9 

The converse of the above theorem holds. 

Theorem 2.17. If the diagram 

l l 1 >.~ 

is a pullback square in ~n~(s )~) ,  then the morphism ~: ~ --> ~ is a 
regular monomorphism. 

Proof Since T is a monomorphism and the above square is a pullback 
diagram, ~ is a monomorphism (cf. MacLane, 1971, Chapter Ill, w Exercise 
5). Therefore it suffices to show that the diagram 

f*(~sh(Y)- (~#(f) ) Q~s~(X) 
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is a pullback square for each morphism f: X --~ Y in ~J)~. As in the proof of 
Theorem 2.16, the outer rectangle of the diagram 

f*~sh (Y) f*~ov > f*~sh (Y) 

f*-r- ~ f*Xy 

f*l~ v >f*ffv 

x 
lx ) ~-x 

is a pullback square. This implies that the outer rectangle of the diagram 

f*~sh (Y) f*q~v ) f*~s,  (Y) 

~#(f) ,L ~ (~#(f) 
~s~ (X) ~x > 6Js~ (X) 

x 
Ix ) ~x 

is a pullback square, for the diagram 

f*~sh(Y) f*~Y ) f*~-y 

~s~(X) Xx > fix 

is commutative, so that the outer rectangles of the second and third diagrams 
are the same. Since the lower square of the third diagram is also a pullback 
square, its upper square should be a pullback square by the pullback lemma, 
which is the desired result. �9 

By Theorems 2.16 and 2.17 we can see easily that within the category 
@@nr(~) the empirical set ~ plays a role of a subobject classifier for regular 
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subobjects. We conclude this section by showing that under highly restrictive 
conditions even exponentials exist within @@rt~(~). 

An empirical set ~ over sjy~ is called fiat if for each morphism f: X --> 
Y in ~3J~, ~#(f): f*~sh(Y) --'> ~s~(X) is an isomorphism. 

Theorem 2.18. Given flat empirical sets ~f and ~ over ~)J~, there exist 
an empirical set ~ over ~ and a morphism ~p: ~ • ~ -+ ~ in ~ n 6 ( ~ r  
such that for any empirical set @ over s)j-~ and any morphism t~: @ • 
--> ~ there exists a unique morphism t~: @ ---> ~ making the following 
diagram commutative: 

,p 

t~xida T ~'~"~''~ ~ 

Proof. For each Boolean locale X in ~ ,  let ~ x  be the exponential of 
63sh(X) by ~sh(X) in the topos ~ t ) ( X )  and qo x its evaluation arrow {Rx • 
~sh(X) -+ ~sh(X). For each morphism f: X ---> Y in ~ ,  let f# be the exponential 
transpose of ~#(f) o (f*~Pv) o (idf*~y • ~#(f)-l).  It is not difficult to see 
that there exists a unique empirical set & over s))2 such that g)sh(X) = 7fx 
for each Boolean locale X in ~ and &#(f) = f# for each morphism f: X --> 
Y in ~)J~. It is easy to see that the assignment q~ to each Boolean locale X in 

of ~x is a morphism from & • ~ to (~ in @@rtd(~2E). It is obvious that 
if such t~ as depicted in the theorem exists, then ex is the exponential transpose 
of t~x in the topos ~ ( X )  for each Boolean locale X in s2R. Therefore it 
remains to show that the family {t~X}X~ObC~0 SO chosen makes the diagram 

f*~s~(Y) ~#(f) > ~sh(X) 

> 

commutative for each morphism f: X --+ Y in s)~. To this end, since ~sh(X) 
is the exponential of 63sh(X) by ~sh(X) and tpx: �9 X ~sh(X) --+ ~sh(X) 
is the evaluation arrow in the topos ~ D ( X ) ,  and since the morphism idf* 
@sh(Y) • ~#(f) is an isomorphism, it suffices to show that 

q~X 0 ((r 0 ~#ns(f))) • id~sh(X) ) 0 (idf,~sh(y) • ~#(f)) 

= ~Px 0 ((~#(f) 0 f*t~y) X idash(X) ) 0 (idf.r X ~#(f))  



252 Nishimura 

which is demonstrated as follows: 

q~x o ((~x o ~#(f)))  x id~sh(X) ) o (idr*cZsh(V) • ~#(f) )  

= ~x o (6x X id~sh<X~ ) o (~#( f )  X ~#(f))  

--- t~x o (~#(f )  • ~#(f) )  

= 6 M r )  o f * ~ y  

= 6)#(f) o f*~0y o (f*t~y X idf*7~sh(V)) 

= tpx o (~#(f )  X ~#(f) )  o ( f*6Y X idf*7~sh(Y)) 

= q~X 0 ( (~#(f )  0 f ' d / y )  X id~sh(X) ) 0 (idr*~sh(y) X ~#(f ) )  

This calculation was an ar row-chasing in the fol lowing diagram, where  the 
above calculation has derived the commuta t iv i ty  of  the outer rectangle from 
the commutat ivi ty  of  all the smaller  d iagrams:  

f*@sh (Y)xf*~s~  (Y) @# ( f ) x ~ #  ( f ) )  ~sh (X)X~sh (X) 

f* ~v• (Y) id ~#  (f) ^ ~ 

x • ~Ss~ (X) > ~sh (X) 

f*~sh(Y)xf*~sh (Y) ~#(f)x~#(f) ),~sh(X)X~s h(X) 
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